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Abstract
In this paper, we propose a generative statistical model to learn the spatiotemporal variability in longitudinal shape data
sets, which contain repeated observations of a set of objects or individuals over time. From all the short-term sequences
of individual data, the method estimates a long-term normative scenario of shape changes and a tubular coordinate system
around this trajectory. Each individual data sequence is therefore (i) mapped onto a specific portion of the trajectory accounting
for differences in pace of progression across individuals, and (ii) shifted in the shape space to account for intrinsic shape
differences across individuals that are independent of the progression of the observed process. The parameters of themodel are
estimated using a stochastic approximation of the expectation–maximization algorithm. The proposed approach is validated
on a simulated data set, illustrated on the analysis of facial expression in video sequences, and applied to the modeling of
the progressive atrophy of the hippocampus in Alzheimer’s disease patients. These experiments show that one can use the
method to reconstruct data at the precision of the noise, to highlight significant factors that may modulate the progression,
and to simulate entirely synthetic longitudinal data sets reproducing the variability of the observed process.

Keywords Longitudinal data · Statistical shape analysis · Large deformation diffeomorphic metric mapping · Medical
imaging · Disease progression modeling
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1 Introduction

1.1 Motivation

Video sequences of smiling faces, repeated measurements of
growing plants or developing cells, medical images collected
at multiple visits from a population of patients affected by a
chronic disease: all these examples can be understood as data
collections where individual instances of a common under-
lying process are observed at multiple time-points. Such
collections are called longitudinal data sets.

The individual processes are thought to result from ran-
dom variations of a common underlying process (or few
of them). Because of the dynamic nature of the observed
processes, one might decompose the variability in two com-
ponents: the dynamic or temporal variability on the one hand,
and the time-independent or spatial variability on the other
hand. In our examples, the variability in the pace of growth
or in age at disease onset is understood as temporal vari-
ability. By contrast, there are also intrinsic inter-individual
differences in height, weight or shape that are independent of
the pace at which the plant grows or the disease progresses,
which we call spatial variability. The main difficulty here is
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that growth or disease progression affect also height, weight
or shape, so that the differences between two observations of
two different samples are due to (i) the fact that the two indi-
viduals are observed at different stages of the process, and
(ii) that they have different intrinsic characteristics.Disentan-
gling these two sources of variability would not be possible if
one had only one observation per individual. Having repeated
observations of the individuals over time, as in longitudinal
data sets, implies that one could decompose the changes due
to the progression of the process from those due to intrinsic
differences that are independent of the progression.

The goal of this paper is to propose a statistical learning
method which can describe the spatiotemporal variability in
a longitudinal data set. We focus here on shape data, where
the shape may be encoded by an image, or by geometrical
objects extracted from images such as curves, surfacemeshes
or segmented volumes.

One of themain difficulties is that the experimental design
often provides little control on the temporal sampling of
the observations. We are interested here by processes for
which there is no clear marker of progression, such as the
progression of neurodegenerative diseases for which the age
at disease onset is hard to determine. Therefore there is no
easy way to re-align in time the individual data sequences to
analyze the inter individual variability at each stage of the
process. By contrast, the method needs to learn how the indi-
vidual data sequences position themselves in relation to each
other. Furthermore, the follow-up period of the observations
rarely covers the whole process, but often just a small part
of it. In clinical studies for examples, patients may be fol-
lowed for few years whereas the disease may progress over
decades. Eventually, dealing with shape data raises the need
for generic representations of such data that can be included
in computational approaches.

1.2 RelatedWork

Structured data like shapes can be advantageously repre-
sented as elements of curved spaces, such as Riemmanian
manifolds, in order to account for the prior on their struc-
ture. Either defined by invariance (Kendall 1984; Su et al.
2014a, b) or topology-preserving properties (Christensen
et al. 1996; Beg et al. 2005; Pennec et al. 2006; Joshi
and Miller 2000; Durrleman et al. 2013b), shape spaces
define distance metrics adapted to the geometry of a well-
identified class of objects, such as brain magnetic resonance
images or segmented organs. These data representations
allows the generalization of the mean-variance analysis
(Pennec 2006; Zhang et al. 2013; Allassonnière et al. 2015;
Gori et al. 2017), which learns the geometrical distribution of
a cross-sectional data set in terms of an average shape, and
variability-encoding parameters. Typical healthy or patho-
logical configurations can be summarized in this manner,

thus opening the way to automatic diagnosis at the individ-
ual level. Time-series data sets, consisting in the repeated
observation of the same object at successive time-points,
can be described by generalized regression approaches on
the same shape spaces (Lorenzi et al. 2010; Niethammer
et al. 2011; Hinkle et al. 2012; Fletcher 2013; Fishbaugh
et al. 2014; Banerjee et al. 2016). A time-continuous scenario
of geometrical transformation is then estimated, offering in
turn individualized interpolation and extrapolation methods.
The statistical analysis of longitudinal data sets requires to
extend the concept of generalized mean-variance for such
time series. In other words, it requires the definition of a
statistical distribution of curves drawn on a shape space.

Shape spaces are usually equipped with a differential
structure of infinite dimension. In particular, the large defor-
mation diffeomorphic metric mapping (LDDMM) approach
defines shape spaces as orbits of template shapes under the
action of an infinite-dimensional parametric group of dif-
feomorphisms of the 2D/3D ambient space (Younes 2010).
With this approach, the geometrical differences between two
objects are captured by estimating the diffeomorphic trans-
formation that warps one into the other. More recent works
propose finite-dimensional approaches built on the same
principles: Zhang and Fletcher (2015) uses truncated Fourier
transforms to build a finite-dimensional Lie algebra, and
Durrleman et al. (2013a) constructs a finite-dimensional Rie-
mannian manifold based on a set of self-interacting particles.

Such structures are favorable to the analysis of longi-
tudinal data sets because they naturally offer the parallel
transport operator (Lorenzi et al. 2011), which allows to
compare tangent-space vectors at distant points in a rele-
vant manner. This operator is key to compare trajectories
on the manifold, and therefore to analyze longitudinal data.
In Su et al. (2014a) and Su et al. (2014b) for instance, tra-
jectories on manifolds are compared by parallel-transporting
their initial velocity vectors back to some privileged point
of the manifold, thereby handling the spatial variability if a
reference configuration and reference time-point is known.
A similar approach is followed in Kim et al. (2017) where
medical images are analyzed in a voxel-wise fashion, or also
in Singh et al. (2016) with the co-adjoint transport instead
of the parallel transport. In Cury et al. (2019), the variability
of a large longitudinal data set of thalamus shapes is ana-
lyzed by transporting individual residual deformations along
a common and pre-computed trajectory, back to a baseline
point. In Schiratti et al. (2015, 2017) the authors define the
exp-parallelization operator which extends the notion of par-
allel lines to Riemannian manifolds. The works Koval et al.
(2017); Bône et al. (2018) build on this operator to ana-
lyze dynamic networks and shape objects respectively. Other
approaches propose towork on a space of trajectories, such as
in Muralidharan and Fletcher (2012) where the Sasaki met-
ric is used to define distances between geodesic curves on a

123



International Journal of Computer Vision (2020) 128:2873–2896 2875

manifold, or in Chakraborty et al. (2017) which requires the
same number of observations per subject.

If parallel transport allows to spatially align manifold-
valued trajectories, a temporal alignment mechanism is also
needed for data sets with variability in the individual pro-
gression dynamics. For instance, two patients developing the
same neurological disease have no reason to reach the same
disease stage at the same age, nor to have synchronous pro-
gressions. A solution is to use time-warp functions, which
define a mapping between an abstract common reference
time frame and the individual time lines (Durrleman et al.
2013b; Schiratti et al. 2015, 2017; Bilgel et al. 2016; Koval
et al. 2017; Kim et al. 2017; Marinescu et al. 2017; Bône
et al. 2018). In Su et al. (2014a, b), the authors build on the
square-root velocity fields framework to quotient the space of
spatiotemporal paths by diffeomorphic time-warps. In Nader
et al. (2019), a monotonic Gaussian process is built from a
set of temporal sources.

1.3 Contributions

In this paper, we propose a method that learns an average
progression and its spatiotemporal variability from a longitu-
dinal shape data set. The average progression takes the form
of a geodesic curve in the finite-dimensional Riemannian
approximation of the LDDMM framework of Durrleman
et al. (2014). The concept of exp-parallelization introduced
in Schiratti et al. (2015, 2017) is then applied in this context
to define a tubular coordinate system, also called Fermi coor-
dinates, around the average geodesic. The average trajectory
and its coordinate system are automatically learned by the
method, so that every individual data sequence is mapped
to a specific portion of the average trajectory to account
for the temporal variability, and shifted in the shape space
to account for the spatial variability. The calibration of the
resulting generative statistical model is done by adapting a
stochastic approximation EM method. This paper extends
the conference paper (Bône et al. 2018), with finer modeling
of the variability in the individual paces of progression, and
an original optimization method for accelerated model cali-
bration. The proposed approach is validated on a simulated
data set, illustrated on a facial expression recognition task,
and applied to hippocampus shape progression modeling in
Alzheimer’s disease.

Section 2 defines the concept of shape spatiotemporal
coordinate systems, which allows the introduction of the
generative statistical model in Sect. 3. Section 4 details
the calibration, personalization and simulation algorithms,
which are evaluated and illustrated in Sect. 5. These exper-
iments will evaluate the goodness-of-fit of the model, the
relevance of the representation of the spatiotemporal variabil-
ity for the identification of factors explaining this variability,

and the ability of themodel to generate synthetic data sets that
reproduce the observed variability in the training data set.

2 Shape Spatiotemporal Reference Frame

Within LDDMM frameworks, shape are positioned with
respect to a reference shape, often called atlas or template. A
coordinate system is defined in the tangent-space at the tem-
plate shape. We propose here to replace the template (which
is a single shape) by a curve (i.e. a shape trajectory), and
the coordinate system by a tubular spatiotemporal coordi-
nate system centered around the template trajectory. We first
review the usual construction of a static template shapebefore
extending it to the spatiotemporal case.

2.1 Positioning a Shape with Respect to a Static
Atlas

Positioning a target shape y with respect to a static refer-
ence y0 is called the registration problem.Deformation-based
morphometry solves it by estimating a diffeomorphism φ1 of
the ambient space Rd (d = 2 or 3) that transforms y0 into y,
which we note φ1�y0 = y. In the context of LDDMM, dif-
feomorphisms are constructed by following the streamlines
of dynamic vector fields t → vt ∈ C∞

0 (Rd ,Rd) over [0, 1]:
∂tφt = vt ◦ φt with φ0 = Id. (1)

Following the approach in finite-dimension of Durrleman
et al. (2014), we further assume that any vt writes as
the Gaussian convolution of p momentum vectors mt =
m(1)

t , . . . ,m(p)
t ∈ R

d over a corresponding set of control
points ct = c(1)

t , . . . , c(p)
t ∈ R

d :

vt : x ∈ R
d →

p∑

k=1

g
[
c(k)
t , x

] · m(k)
t ∈ R

d (2)

with g : x, x ′ ∈ R
d → exp

∥∥x ′ − x
∥∥2

�2
/σ 2 the Gaussian

kernel function of kernel width σ >0.Many other diffeomor-
phisms constructed in this manner might actually transform
y0 into φ1�y0: we call solution of the registration problem the
most regular transformation i.e. that minimizes its “kinetic”
energy:

1

2

∫ 1

t=0
‖vt‖2Gct

= 1

2

∫ 1

t=0
m�

t · Gct · mt (3)

where ∀t ∈ [0, 1], Gct is the p × p “kernel” symmetric

positive-definite matrix of general term g[c(k)
t , c(l)

t ], and (.)�
is the matrix transposition. Such energy-minimizing curves,
also called geodesics, are such that the control points and the
momentum vectors trajectories are fully determined by their
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initial values and the followingHamilonian equations (Miller
et al. 2006):

ċt = Gct · mt ; ṁt = −1

2
∇ct

{
m�

t · Gct · mt

}
(4)

where ∇x (.) is the gradient operator with respect to x .
Assuming that there exist a diffeomorphism φ1 constructed
according to Eqs. (1, 2) such that φ1�y0 = y, this last
result allows to compactly represent the positioning of y with
respect to y0 with a set of p control points c0 and attached
momenta m0. In other words, m0 is the coordinate of y in
the coordinate system defined by (c0, y0). In practice, the
perfect registration constraint φ1�y0 = y is relaxed, and we
call solution to the registration problem the extremal-path
diffeomorphism φ1 that warps y0 as close as possible to y,
for some extrinsic error measure dE (y0, y). In this paper, the
following choices are considered for dE , depending on the
nature of y0 and y:

• the �2 metric for meshes with point-to-point correspon-
dence (i.e. the sum of squared differences between point
positions),

• the current metric (Vaillant and Glaunès 2005; Charon
et al. 2020) for oriented surface meshes without point-
to-point correspondence (details are given in appendix
for the reader’s convenience).

Noting y0 as a collection y
(1)
0 , . . . , y(K )

0 of K points ofRd ,φ1

acts independently and directly on each point y(k)
0 according

to φ1�y
(k)
0 = φ1◦ y(k)

0 . Note that themethodology introduced
in this section can be adapted straightforwardly to image data,
by defining the action of the diffeomorphisms φ on the image
I as I ◦φ−1 and using the sumof squared differences between
image intensities as the error measure.

2.2 Riemannian Structure

Let c0 be a set of p control points. We define:

Dc0 = {
φ1 | ∂tφt = vt ◦ φt , φ0 = Id, vt = Conv(ct ,mt )

(ċt , ṁt ) = Ham(ct ,mt ), m0 ∈ R
p×d} (5)

where Conv(., .) and Ham(., .) are compact notations for the
convolution operator defined by Eq. (2) and the Hamiltonian
equations (4) respectively. Equipped at any φ ∈ Dc0 with
the local metric G−1

φ(c0)
, Dc0 has the structure of a Rieman-

nian manifold of dimension p × d. The tangent-space at φ

is the set of velocity fields obtained by convolving any set of
momentum on φ(c0):

TφDc0 = {
Conv(φ(c0),m) |m ∈ R

p×d}. (6)

The geodesics of Dc0 are the curves t → φt of constant
kinetic energy (see Eq. (3)) i.e. such that the corresponding
control points and momenta trajectories t → ct ,mt satisfy
the Hamiltonian equations (4). We define the exponential
operator on Dc0 :

Expt0,tφ : v0 ∈ TφDc0 → φt ∈ Dc0 (7)

where φt is the diffeomorphism reached at time t by the
geodesic path obtained by integration from some reference
time t0 ∈ R with initial conditions φ(c0), m0 such that
v0 = Conv(φ(c0),m0), and φ0 = φ. The momentum vec-
tor m0 is the dual of the velocity field v0. The particular case
Exp0,1φ corresponds to the usualRiemannian exponentialmap
and will be noted Expφ . Diffeomorphisms φ ∈ Dc0 act on
shapes of the ambient space y through the action � previously
defined. Let y0 be a reference shape.We define its orbit under
the action �:

Sy0,c0 = Dc0�y0 = {φ�y0 | φ ∈ Dc0}. (8)

Sy0,c0 is a submanifold of the extrinsic shape spaceE inwhich
is defined the distance dE .

2.3 Positioning a Shape with Respect to a Dynamic
Atlas

Instead of positioning shapes with respect to a static atlas
y0, we aim now to position shapes with respect to a shape
geodesic t → γ (t)�y0, where γ is a geodesic of Dc0 of the
form γ (t) = Expt0,tId (v0) with v0 = Conv(c0,m0). Similarly
to cylindrical coordinates in Euclidian spaces, under some
conditions (see Manasse and Misner 1963; Hirsch 2012) a
shape y ∈ Sy0,c0 admits a unique spatiotemporal coordinate,
also known as Fermi coordinates, t ∈ R and v ∈ Tγ (t0)Dc0
such that v⊥γ̇ (t0):

y = ExpPv
γ (t)�y0 with ExpPv

γ (t) = Expγ (t)

[
Pv

γ (t)
]

(9)

where Pv
γ (t) denotes the parallel transport of v along γ from

t0 to t . The curves γ and η : t → ExpPv
γ (t) are said exp-

parallel, and themapping γ → η is called exp-parallelization
along v (Schiratti et al. 2015, 2017). In other words, a choice
of y0, c0,m0, t0 defines a spatiotemporal reference frame,
with respect to which a shape y can be unambiguously posi-
tioned in terms of a time t and a velocity field v orthogonal
to v0 = γ̇ (t0). The time t is the temporal component of
the coordinate which positions the shape along the reference
trajectory given by the direction v0. The velocity v is the spa-
tial component of the coordinate, which positions the shape
in the hyperplane that is orthogonal to v0. This decompo-
sition can also be understood as the orthogonal projection
of y onto the one-dimensional submanifold γ �y0, hence the
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Fig. 1 [Left] Shape spatiotemporal reference frame y0, c0,m0, t0 with
respect to which a shape y admits coordinates t ∈ R, v ∈ v⊥

0 ⊂
Tγ (t0)Dc0 . Three spaces are involved: the manifold of control points
R

p×d (top), the manifold of diffeomorphisms Dc0 (middle), and the
shape submanifold Sy0,c0 of the extrinsic shape space E (bottom).
The momenta m0,m and the velocity fields v0, v are in one-to-one
correspondence. The velocity field v, also called space-shift, is parallel-
transported along the geodesic γ by the operator t → Pv

γ (t). Figure 2

illustrates the effect of parallel transport on Dc0 . [Right] Illustrations
of the manifolds abstractly depicted on the left side of the figure. The
panels of each row plots elements of the corresponding geodesic (solid
black lines on the left panel). The two columns correspond to the times
t0 and t . Each row displays two example elements of the corresponding
geodesic (solid black lines on the left panel). The two columns corre-
spond to the times t0 and t

condition v⊥v0. Figures 1 and 2 illustrate this concept of spa-
tiotemporal reference frame, in which any shape y admits the
coordinates t, v. Note that the time-point t0 does not play any
particular role, in the sense that y can be described in the same
manner for any other choice t ′0; a one-to-one transformation
of the spatiotemporal reference frame can actually be derived
as:

t ′ = t + t ′0 − t0 and v′ = Pv
γ (t ′0) (10)

In general, the target shape y might not exactly belong to
Sy0,c0 . Similarly to the static atlas case, Eq. (9) is relaxed
and we call solution to the longitudinal registration problem
the pair t , v such that y0 is warped as close as possible to y,
in the sense of the extrinsic metric dE .
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Fig. 2 [Bottom] Illustration of a shape geodesic t → γ (t)�y0: the
man-like shape (solid black contour) raises his left arm. This geodesic is
parametrizedbya single set of control points c0 (blackdots) and attached
momentum vectors m0 (bold blue arrows), to which corresponds the
velocity field v0 (light blue arrows). A second set of momentum vectors

m (bold red arrows) attached to the same control points c0 parametrizes
the exp-parallelization of this shape geodesic. [Top] Exp-parallel shape
curve t → η(t)�y0 to the shape geodesic γ �y0: the exp-parallelization
transfers the arm-raising motion from one man-like shape to another
(Color figure online)

3 Statistical Model for Longitudinal Data
Sets of Shapes

3.1 Hierarchical Generative Model

Let {yi, j , ti, j }i, j be a longitudinal data set of shapes,
which is the collection of repeated individual measurements
yi,1, . . . , yi,ni for i = 1, . . . , n, where each shape yi, j
corresponds to a time ti, j ∈ R. Measurements are consid-
ered as sample points along individual trajectories, which
are in turn considered exp-parallel to a reference geodesic
curve, therefore having a constant spatial coordinate in the
spatiotemporal reference frame centered around this refer-
ence geodesic. Noting y0, c0, m0, t0 the parameters of the
spatiotemporal coordinate system, v0 = Conv(c0,m0) and
γ : t → Expt0,tc0 (v0) the reference geodesic, the statistical
model writes:

ExpPvi
γ

[
ψi (ti, j )

]
� y0

iid∼ NE
(
yi, j , σ 2

ε ),

where

∣∣∣∣∣
ψi : t → αi · (t − τi ) + t0,

vi = Conv(c0,mi ), mi = A0,m⊥
0

· si ,

and

∣∣∣∣∣∣
αi

iid∼N[0,+∞[(1, σ 2
α ), τi

iid∼N (t0, σ 2
τ ),

si
iid∼N (0, 1)

(11)

where the noise distribution NE
(
μ, σ 2

ε ) is defined such
that the likelihood is proportional to p(y) ∝ exp(−dE (y −
μ)2/2σ 2

ε ). Model (11) is hierarchical in the sense that indi-

vidual trajectories t → ExpPvi
γ ◦ ψi (t) are independently

defined as spatiotemporal transformations of a common,
population-level geodesic t → γ (t).

The time-warp functionsψi encode the temporal variabil-
ity of the observed individual trajectories in terms of pace of
progression αi and onset time τi . They map the index ti, j of
the j-th shape of the i-th individual (e.g. the age of the sub-
ject at a given visit), to a time-point ψi (ti, j ) on the reference
geodesic (e.g. the disease stage).

The spatial variability is encoded by the space-shifts
vi ∈ v⊥

0 ⊂ Tγ (t0)Dc0 along which γ is exp-parallelized.
Those space-shifts admit dual representations under the form
of the momenta mi , which are assumed to derive from q
source parameters si = s(1)

i , . . . , s(q)
i , in the spirit of inde-

pendent component analysis (ICA) (Hyvärinen et al. 2004).
The orthogonality vi⊥v0, necessary for the identifiability of
the model, is ensured by the projection of each column of
the (p · d) × q mixing matrix A0 onto the hyperplane m⊥

0
of Rp×d for the cometric Gc0 , noted A0,m⊥

0
. The individual

parameters aremodeled as independent samples fromnormal
distributions:

• a truncated normal distribution with fixed mean for the
acceleration factor αi , allowing the identifiability of m0;

• a normal distribution for the onset time τi ;
• a normal distributionwith fixedmean and variance for the
sources si , allowing the identifiability of y0 and A0,m⊥

0
respectively.
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These parameters define individual trajectories as random
spatiotemporal transformations of a common reference tra-
jectory. The spatial and temporal transformations commute,
in the sense that ∀t ∈ R, ExpPvi

γ ◦ψi
= ExpPvi

γ ◦ ψi . The
population trajectory is fully parameterized by the template
shape y0, the control points c0, the momenta m0 and the ref-
erence time t0. The individual variability is unambiguously
represented by two reduced sets of scalar parameters: the
acceleration αi and the onset time τi for the temporal part,
and the sources s(1)

i , . . . , s(q)
i for the spatial part. In practice,

it is possible to choose a number of sources q � p×d much
lower than the dimension of the tangent-space Tγ (t0)Dc0
while still capturing most of the geometrical variability in
the data.

3.2 Mixed-Effects and BayesianModeling

We further specify the formulation of the model (11) to fit
the framework of mixed-effects models. We distinguish:

• the fixed-effects θ = (θ1, θ2) with θ1 = (t0, στ , σα, σε)

and θ2 = (y0, c0,m0, A0), also called the model param-
eters,

• the random effects z = (zi )i where zi = (αi , τi , si ).

We choose to work in a Bayesian framework, in order
to theoretically ensure the existence of the maximum a pos-
teriori (MAP) estimate of the parameters θm. Such priors
also regularize and guide the estimation procedure thanks to
reasonable and mild prior assumptions on the optimal fixed
effects values. The following standard conjugate distribu-
tions are selected asBayesian priors on themodel parameters:

t0 ∼ N (t0, ς
2
t ), y0 ∼ N (y0, ς

2
y ),

σ 2
τ ∼ IG(mτ , ς

2
τ ), c0 ∼ N (c0, ς

2
c ),

σ 2
α ∼ IG(mα, ς2

α), m0 ∼ N (m0, ς
2
m),

σ 2
ε ∼ IG(mε, ς

2
ε ), A0 ∼ N (A0, ς

2
A),

where IG(., .) denotes the inverse-gamma distribution.

4 Algorithms: Calibration, Personalization,
Simulation

4.1 Objectives

Given a longitudinal data set of shapes {yi, j , ti, j }i, j that we
may note more compactly {y, t}, we formulate three algo-
rithmic objectives:

• Calibration, which consists in computing the MAP
parameters θm, unconditionally to any random effect z:

θm = argmaxθ

∫
p
({y}, z, θ ; {t}) · dz. (12)

• Personalization, which consist in computing the MAP
random effects zm that best represent some longitudinal
shape data set {y, t} (which may or may not be the one
used for calibration), given the calibrated model θm:

zm = argmaxz p
({y}, z, θm ; {t}). (13)

• Simulation, which consist in generating a new data set
{ys} that resembles the original data set {y}.
We give now the details of the algorithms to solve these

optimization problems. Their implementation is freely avail-
able in the softwareDeformetrica (find the install instructions
and the documentation at http://www.deformetrica.org).

4.2 Computation of the Complete Log-Likelihood

Evaluating the joint log-likelihood log p({y}, z, θ ; {t}) =∑n
i=1

∑ni
j=1 log p(yi, j , zi , θ ; ti, j ) for some set of parame-

Algorithm 1: Compute the complete log-likelihood.
input : Longitudinal data set of shapes {y, t} = {yi, j , ti, j }i, j .

Population parameters θ = y0, c0,m0, a0, t0, στ , σα, σε .
Individual parameters z = (zi )i with zi = αi , τi , si .

output: The complete log-likelihood Q = log p({y}, z, θ ; {t}).
Set Q = 0. // initialization

/* compute the squared residuals ε2i, j for each visit */

Compute the initial velocity field v0 = Conv(c0,m0).
Compute the geodesic γ : t → Expt0,tId (v0). // see Durrleman

et al. (2014)

for the source index l = 1 to q
Compute the l-th column of A0,m⊥

0
, projecting Coll (A0) on m⊥

0 .

Compute the initial velocity field wl = Conv
[
c0, Coll (A0,m⊥

0
)
]
.

Compute the parallel transport wl : t → Pwl
γ (t). // see Louis

et al. (2017)

end
for the individual index i = 1 to n
for the visit index j = 1 to n j
Compute the time-warped age ψi, j = αi · (ti, j − τi ) + t0.

Compute the initial velocity field vi, j = ∑q
l=1 s

(l)
i · wl(ψi, j ).

Compute φi, j = Expγ (ψi, j )
(vi, j ) ◦ γ (ψi, j ). // see Durrleman

et al. (2014)

Compute the squared residual ε2i, j = dE (yi, j , φi, j�y0)2.

/* add the model log-likelihood log p(yi, j |zi , θ ; ti, j ) */

Update Q ← Q − 1
2

{ |E| · log σ 2
ε + ε2i, j/σ

2
ε

}
.

end

/* add the random effects log-likelihood log p(zi |θ) */

Update Q ← Q − 1
2

{
log σ 2

τ + (τi − t0)2/σ 2
τ + ‖si‖2�2 + log σ 2

α +
log(1 − F(−1/σα))2 + (αi − 1)2/σ 2

α

}
.

end

/* add the Bayesian prior log-likelihood log p(θ) */

Update Q ← Q − 1
2

{
(t0 − t0)2/ς2

t + mτ (log σ 2
τ + ς2

τ /σ 2
τ ) +

mα (log σ 2
α + ς2

α/σ 2
α ) + mε (log σ 2

ε + ς2
ε /σ 2

ε )
}
. // log p(θ1)

Update Q ← Q − 1
2

{ ‖y0 − y0‖2�2 /ς2
y + ‖c0 − c0‖2�2 /ς2

c +
‖m0 − m0‖2�2 /ς2

m + ∥∥A0 − A0
∥∥2

�2
/ς2

A

}
. // log p(θ2)
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ters θ and random effects z = (zi )i is central for both cali-
bration and personalization algorithms. The computationally
most intensive part is the computation of the conditional
log-likelihood log p(yi, j |zi , θ ; ti, j ), which amounts to syn-
thesize the candidate data for the current values of the fixed
and random-effects (θ, zi ) and measure its discrepancy with
the true observation yi, j . The synthesis of the data follows
the generative model introduced in Sect. 2 and essentially
requires the integration of ordinary differential equations.

Algorithm 1 details the procedure, where |E | denotes the
dimension of the extrinsic shape shape E , and F(.) the cumu-
lative distribution function of the standard Gaussian. The
“source index” refers to the ICA components.

4.3 Calibration

4.3.1 Initialization Procedure for Model Calibration

A good choice of initial parameters θ [0] and latent variables
z[0] improves the convergence speed of the calibration algo-
rithm. We propose in this section an initialization procedure
that combines several elementary shape analysis tools. Given
a longitudinal data set of shapes {yi, j , ti, j }i, j :

1. estimate a Bayesian atlas model (see Gori et al. 2017)
from the baseline shapes {yi,1}i , to get an approximate
population-level average geometry y′

0, c
′
0 as well as n

Algorithm 2: Calibration with MCMC-SAEM-GD.

input : Dataset y. Initial parameters θ [0] and z[0].
Sequence of step-sizes (ρ[k])k . Sampling variances (σ (b))b.

output: Estimation of θm ≈ θ [k].
Set k = 0 and S[0]

1 = S1(z[0]). // initialization, eq. (14)

repeat
Set k ← k + 1.

/* block Gibbs symmetric random walk sampling */

foreach random variable z(b) in (z(1), z(2), z(3)) = (α, τ, s) do
Draw a candidate z(b) ∼ N (z[k−1](b), σ 2

b ).
Let z = (z[k](1), . . . , z[k](b−1), z(b), z[k−1](b+1), . . .).

Compute the ratio ω= log p({y},z,θ [k−1];{t})
p({y},z[k−1],θ [k−1];{t}) . // alg. 1

Draw u according to the uniform distribution u ∼ U(0, 1).
if log u < ω then z[k](b) ← z(b) else z[k](b) ← z[k−1](b).

end
Adapt the proposal variances (σ (b))b. // see Atchade (2006)

/* analytical update rule for θ1 (classical SAEM) */

Set S[k]
1 ← S[k−1]

1 + ρ[k] · [S1(z[k]) − S[k−1]
1

]
. // eq. (14)

Set θ [k]
1 ← θ�

1 (S[k]) // eqs. (15) - (18)

/* gradient-descent-based update heuristic for θ2 */

Solve θ�
2 =argmax

θ2

p({y}, z[k], θ [k]
1 , θ2 ; {t}) by GD. // alg. 1

Set θ [k]
2 ← θ

[k−1]
2 + ρ[k] ·

[
θ�
2 − θ

[k−1]
2

]
. // heuristic

until convergence

space-shift momenta m′
i mapping this geometry to the

baseline observations, and an estimate of the noise level
σ ′

ε ;
2. for i = 1, . . . , n, estimate a geodesic regression model

(see Fishbaugh et al. 2014) from the individual time-
series {yi, j } j , then parallel transport (see Louis et al.
2017) the computed individual initial momenta back to
themean geometry y′

0, c
′
0 along the corresponding space-

shift m′
i , and finally compute the Euclidean average of

those w′
i to get an approximate population-level mean

momenta m′
0 = 〈w′

i 〉i ;
3. for i = 1, . . . , n, initialize the individual temporal

parameters with τi = 〈ti, j 〉 j , α2
i = w′

i ·Gc′0 ·m′
0

m′
0·Gc′0 ·m′

0
if this

value is positive and αi = 1 otherwise, then compute σ ′
τ

and σ ′
α according to Eqs. (16) and (17) respectively;

4. solve a standard ICA problem with q components from
the collection of space-shift momenta w′

i,m′⊥
0
preliminar-

ily projected on the orthogonal space to m′
0, and set A′

0
as the estimated mixing matrix;

5. shoot forward the mean geometry y′
0, c

′
0 in the direction

m′
0 with length t

′′
0 −t ′0 where t ′0 = 〈ti,1〉i and t ′′0 = 〈ti, j 〉i, j

to get longitudinally centered estimates c′′
0 , y

′′
0 , m

′′
0, and

parallel-transport the q columns of A′
0 along the same

geodesic to obtain A′′
0;

6. personalize the model given by the initial parameters
θ [0] = (y′′

0 , c′′
0 ,m

′′
0, A

′′
0, t

′′
0 , σ ′

τ , σ
′
α, σ ′

ε) to obtain z[0].

4.3.2 The MCMC-SAEM-GD Algorithm

Calibration is a computationally-intensive task for mostly
two reasons. First, the optimized variable θ is of high dimen-
sion |θ | = 4+|y0|+d · p · (2+q) where d is the dimension
of the ambient space, p the number of control points, q the
number of sources, and |y0| the number of vertices neces-
sary to describe the template mesh. Second, the optimized
function requires the computation of the integral over the
latent variables. The term p({y}, z, θ ; {t}) can only be eval-
uated for some given random-effect values z, by solving sets
of ordinary differential equations (see Algorithm 1). In this
paper, we propose to address this computational challenge
by combining the MCMC-SAEM algorithm with gradient
descent (GD). The backbone of this algorithm is the SAEM
algorithm (Delyon et al. 1999), which is a stochastic approxi-
mation (SA) of the classical expectation–maximization (EM)
algorithm (Dempster et al. 1977): are alternated a stochas-
tic simulation step z[k] ∼ p(z|{y}, θ [k−1] ; {t}) of the latent
variables followed by a deterministic update of the model
parameters θ [k] ← θ�(z[k]). In Kuhn and Lavielle (2004),
the authors introduce the MCMC-SAEM algorithm, where
the simulation step is replaced by a Markov chain Monte-
Carlo (MCMC) step while still preserving the theoretical

123



International Journal of Computer Vision (2020) 128:2873–2896 2881

convergence properties. In this paper, an analytical update
rule θ� cannot be found for all the parameters θ : we use a
gradient descent approach to overcome this difficulty, and
we nameMCMC-SAEM-GD the global resulting algorithm.
Algorithm 2 gives a high-level pseudo-code of the proposed
procedure. The sufficient statistics write:

St = 1

n

n∑

i=1

τi , Sα = 1

n

n∑

i=1

(αi − 1)2,

Sτ = 1

n

n∑

i=1

τ 2i , Sε = 1

|E | · n · 〈ni 〉i
n∑

i=1

ni∑

j=1

ε2i, j , (14)

where ε2i, j = dE {yi, j , ExpPvi
γ

[
ψi (ti, j )

]
�y0}2 and 〈ni 〉i is

the average number of longitudinal observations per subject.
The update rules write:

t�0 =
[
ς2
t St + σ�

τ
2

n
t0

]
·
[
ς2
t + σ�

τ
2

n

]−1

(15)

σ�
τ =

[
Sτ − 2 t�0 St + t�0

2 + mτ

n
ς2

τ

] 1
2 ·

[
1 + mτ

n

]− 1
2

(16)

σ�
α =

[
Sα + mα

n
ς2

α

] 1
2 ·

[
1 − f (−1/σ �

α)/σ �
α

1 − F(−1/σ �
α)

+ mα

n

]− 1
2

(17)

σ�
ε =

[
Sε + mε

|E | n 〈ni 〉i ς2
ε

] 1
2 ·

[
1 + mε

|E | n 〈ni 〉i
]− 1

2

(18)

where f (.) is the probability density function of the standard
normal distribution. Both the coupled set of Eqs. (15)–(16)
and the implicit Eq. (17) can easily be solved by iterative
update. Equation (18) is closed-form.

4.3.3 Implementation Details

The sequence of ρ[k] required by Algorithm 2 is chosen to be
constantly equal to 1 in a preliminary “burn-in” phase of the
calibration procedure, and then decreases with the iterations
with an exponential decay. The fanning numerical scheme is
used to compute the parallel transport along geodesics in a
scalable manner (Younes 2007; Louis et al. 2017, 2018). A
blockMetropolis-Hasting-within-Gibbs approach is used for
the MCMC sampling step, where each variable αi , τi and si
are successively sampled. Several transition kernels can be
chained in order to decrease the correlation between z[k−1]
and z[k]. Proposal variances are dynamically adapted dur-
ing the iterations to ensure that the acceptation rates remain
close to 30% (Atchade 2006). The optimization problem
for the update of θ2 is solved by steepest gradient descent.
The gradients of the complete log-likelihood are obtained by
autodifferentiation using the PyTorch library. The PyKeops

library (Charlier et al. 2017) implements smart autodiffer-
entiation methods for convolution intensive computations to
avoid memory overflows.

4.4 Personalization

Once the model is calibrated using a training data set, any
individual data sequence {yi, j , ti, j } j can be reconstructed
by fitting the model (whether it was part of the training
set or not, i.e. i ≤ n or i > n respectively). This pro-
cedure, called here personalization, consists in solving the
optimization problem defined by Eq. (13). Note that all
individuals can be treated independently i.e. Eq. (13) is equiv-
alent to solving several sub-problems of the form zmi =
argmaxzi log p({yi, j } j , zi , θm ; {ti, j } j ). The computed opti-
mal latent variables zmi give in turn the spatiotemporal
coordinates of the individual trajectory in the reference frame
of the calibrated model θm. We use the L-BFGS optimiza-
tion method (Liu and Nocedal 1989), where gradients are
automatically computed using the PyTorch autodifferentia-
tion library.

4.5 Simulation

The purpose of the simulation is to take advantage of the gen-
erative nature of the model to generate an entirely synthetic
data set that reproduces the characteristics of the original
training data set.

Given a longitudinal data set, the calibration followed
by the personalization to the training data yields a nor-
mative model of progression, a spatiotemporal coordinate
system (both being encoded by the parameters θm) and
the coordinates of each individual in this reference frame
(i.e. zm = (zmi )i ). We denote p̃(zm, {t}) the empirical joint
distribution of those individual parameters and of the corre-
sponding time-indices {t}.We simulate synthetic data {ys} by
sampling random variables from this empirical distribution,
and generate data following the generative model (11).

We use statistic functions ζ (most often not sufficient,
similarly to Marin et al. (2012)) to evaluate to which extend
the simulated data resemble the training data:

ζ({ys})≈ζ({y}), with
{

{ys} iid∼ p({y}|zs, θm ; {t s})
(zs, {t s}) iid∼ p̃(zm, {t})

.

(19)

For visualization purposes, we may choose to ignore the
calibrated variance of noise σm

ε and replace it with the degen-
erated value σε = 0. This choice will generate smoother
shapes, and we will call such simulations “without noise”.
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Fig. 3 Visualization of the parameters θ1= (y0, c0,m0, A0). The tem-
plate shape y0 is in solid black, the control points c0 are the five dot
points in either blue or red, the momenta m0 is the bold blue arrow,
and the four columns of A0 are the bold red arrows. The velocity fields
corresponding to the momenta m0 or the geometrical components of
A0 are respectively represented with light blue or light red arrows. The
green dots and arrows on the top figure mark the four landmark posi-
tions that will be considered for the statistic ζ , in order to validate the
simulation algorithm in Sect. 5.1.4 (Color figure online).

5 Experiments

5.1 Validation on Synthetic Shape Data

In this section, the calibration, personalization and simulation
algorithms are validated on a synthetic data set in 2D. The
simulation algorithm is first used in Sect. 5.1.1 to generate a
synthetic shape data set from a chosen ground truth model.
We use then the calibrationmethod to infer the model param-
eters from the synthetic data set. The performance and the
stability of the calibration algorithm is evaluated in various
settings in Sect. 5.1.2. The calibrated model is personal-
ized in Sect. 5.1.3, and the learned individual parameters
are compared to the true values. Eventually, we re-simulate
a synthetic data set from the calibrated model, and assess in
Sect. 5.1.4 to which extend this new synthetic data set has
similar statistics as the original data set.

5.1.1 Simulating Synthetic Data from a Ground Truth Model

We choose values of fixed effects θ =(y0, c0, m0, A0, t0, στ ,
σα , σε), which specifies a normal distribution of shape tra-
jectories. The chosen geometrical parameters y0, c0,m0, A0

are shown in Fig. 3. In addition, we choose t0 = 0, στ = 2,
σα =0.2 and σε ∈{0.00, 0.01, 0.02, 0.03, 0.05}.

We use the generative model to simulate a total of n ∈
{50, 100, 200} individual trajectories and to sample them at
several time-points {ti, j }nij=1. We draw the number of obser-
vations for each individual ni ≥ 2 according to a shifted
Poisson distribution with parameter E(ni )∈{3, 5, 7, 9}.

We finally impose that the individual time-points {ti, j } j
are uniformly distributed in the observation interval
[ti,1, ti,ni ] = [ti,0 − �ti/2, ti,0 + �ti/2], where both the
observation time window �ti = ti,ni − ti,1 and the mid-

point ti,0 are drawn according to normal distributions: �ti
iid∼

N (
E(ni )−2, σ 2

τ

)
and ti,0

iid∼ N (t0, σ 2
τ ). Figure 4 displays

some generated data in the reference case where σε = 0.02
and E(ni ) = 7.

5.1.2 Model Calibration

The model calibration outputs are the estimated population
parameters θ = (θ1, θ2) with θ1 = (t0, στ , σα, σε) and θ2 =
(y0, c0,m0, A0). They are expected to be close to the MAP
θm defined by Eq. (12).

Computing the MAP. Because only a finite number of data
points are available and a Bayesian prior p(θ) is assumed on
the parameters θ , the MAP θm does not correspond exactly
to the ground truth parameters θ t. The calibrated parame-
ters θ are expected to converge towards the corresponding
MAP parameters θm when the number of iterations goes to
infinity—and this section experimentally verifies it, when
the MAP parameters θm are known to converge towards the
ground truth parameters θ t when the number of observations
goes to infinity. For each configurationof ground truth param-
eters θ t and particular random sampling zt of the generative
model they define, θm1 can be analytically computed with
Eqs. (15–18) and θm2 approximated by a steepest gradient
descent approach initialized with θ t and zt (see Algorithm 2).
The calibration error between θ and θm is analyzed and dis-
cussed in details in the rest of this section, when the statistical
error between θm and θ t is only computed in the reference
configuration. Using the performance metrics introduced in
the following paragraph, the second line of Table 1 (in ital-
icized text) gives the corresponding quantitative normalized
distances, which remain below 6% in all cases.

Normalized error metrics.The error for the scalar parameters
θ1 = (t0, στ , σα, σε) is measured by the absolute difference
between estimated and MAP values. The error for t0 is nor-
malized by the characteristic population observationwindow,
that we define as 2·(1+σα)·[E(�ti )/2+στ ]. The remaining
errors for στ , σα, σε are respectively normalized by the true
standard deviations στ =2, σα =0.2, and the estimated noise
level by theBayesian atlasmodel (Gori et al. 2017) computed
during the initialization pipeline described in Sect. 4.3.1. The
error on the template shape y0 is assessed as the maximum
point-to-point residual distance, and normalized by the con-
servative value of 3 spatial units for the characteristic size of
the considered shape (see Fig. 3). The control points c0 and
themomentam0 are jointly evaluated through the �2 distance
of the estimated velocity field v0=Conv(c0,m0) to theMAP
value, normalized by the �2 norm of this MAP velocity field.
Finally, the convergence of modulationmatrix A0 is assessed
by measuring the mismatch between the sets of space-shifts
that can be generated from the pair of parameters (c0, A0):
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Fig. 4 Illustration of the evaluation procedure for model calibration,
and subsequent personalization or simulation from the learned model.
The ground truth population geodesic is plotted in black on the central
line. From this model are simulated n = 100 individual spatiotemporal
trajectories: three randomly-picked samples are plotted in black on the
top lines. The population geodesic of the calibrated model is plotted in

green on the central line, superimposed with the ground truth geodesic.
This calibrated model can then be personalized to the training obser-
vations as plotted in red, or leveraged to simulate new spatiotemporal
trajectories that resemble the original data set as plotted in blue (Color
figure online)

(i) the estimatedmodulationmatrix is first re-projected on the
MAP control points, (ii) the linear subspaces generated by
the columns of the MAP and estimated modulation matrices
are defined, (iii) the matrix representations of the projectors
over those subspaces are computed, (iv) the average of the
four greatest eigenvalues of their difference captures themis-
match between those projectors, (v) the result is normalized
by the largest eigenvalue of the MAP projector.

Evaluation setups and results. In addition to the previously
introduced setups, configurations with varying allowed num-
ber of sources q ∈ {2, 4, 6} are also evaluated. We call the

configuration with σε =0.02, q =4, n=100, and E(ni )=7
the reference one. Augmented with the 11 configurations dif-
fering from this reference by a single parameter, a total of 12
calibration problems are defined. Each is solved 10 times by
running the stochastic MCMC-SAEM-GD algorithm.

Figure 5 plots the evolution of the error metrics across the
allowed 200 iterations for the reference configuration: the
black lines correspond to the 10 different runs, and in green is
represented theirmean and standard deviation. The algorithm
is stable i.e. converges to similar results at each run: the final
standard deviation of the error is smaller than 10% of the
maximal (initial) error, for all parameters. The two regimes
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Table 1 Final average normalized performancemetrics and associated standard deviations, obtained after 10 independent runs of theMCMC-SAEM
algorithm in varied configurations

y0 (%) c0,m0 (%) c0, A0 (%) t0 (%) στ (%) σα (%) σε (%)

Reference 2.5± 0.01 6.2± 0.10 2.1± 0.02 8.8± 0.06 1.7± 0.28 7.0± 2.73 7.7± 0.01

Statistical error 0.0 0.4 0.1 2.5 5.6 3.0 0.0

σε = 0.00 2.7± 0.01 5.9± 0.17 2.5± 0.05 7.4± 0.24 2.6± 0.60 8.1± 5.24 36.4± 0.03

σε = 0.01 6.0± 0.01 2.5± 0.09 1.7± 0.01 2.7± 0.07 0.7± 0.21 0.8± 0.44 15.1± 0.03

σε = 0.02 2.5± 0.01 6.2± 0.10 2.1± 0.02 8.8± 0.06 1.7± 0.28 7.0± 2.73 7.7± 0.01

σε = 0.03 1.4± 0.01 1.9± 0.09 1.5± 0.03 4.8± 0.08 2.3± 0.38 3.8± 1.23 5.1± 0.01

σε = 0.05 1.8± 0.02 4.1± 0.21 1.9± 0.04 1.5± 0.10 1.1± 0.34 0.9± 0.33 1.7± 0.01

E(ni ) = 3 1.6± 0.02 5.7± 0.29 2.1± 0.05 5.2± 0.22 3.9± 1.12 7.1± 2.03 6.5± 0.03

E(ni ) = 5 4.4± 0.01 5.9± 0.32 2.7± 0.03 1.1± 0.15 5.8± 0.56 0.7± 0.36 6.7± 0.02

E(ni ) = 7 2.5± 0.01 6.2± 0.10 2.1± 0.02 8.8± 0.06 1.7± 0.28 7.0± 2.73 7.7± 0.01

E(ni ) = 9 2.4± 0.01 3.2± 0.05 1.7± 0.04 7.2± 0.03 1.8± 0.11 2.7± 0.17 6.3± 0.01

q = 2 2.5± 0.04 18.0± 0.28 51.3± 0.06 10.6± 0.16 9.3± 0.52 3.1± 0.84 172.4± 0.07

q = 4 2.5± 0.01 6.2± 0.10 2.1± 0.02 8.8± 0.06 1.7± 0.28 7.0± 2.73 7.7± 0.01

q = 6 2.5± 0.01 6.8± 0.10 1.9± 0.03 8.9± 0.07 1.7± 0.20 9.3± 1.80 7.0± 0.02

n = 50 3.4± 0.01 3.6± 0.16 2.2± 0.03 4.7± 0.04 0.2± 0.16 2.0± 0.17 7.6± 0.02

n = 100 2.5± 0.01 6.2± 0.10 2.1± 0.02 8.8± 0.06 1.7± 0.28 7.0± 2.73 7.7± 0.01

n = 200 1.8± 0.00 3.9± 0.08 1.5± 0.02 2.6± 0.04 0.8± 0.12 3.7± 0.19 6.9± 0.01

The algorithm is run for 200 iterations in all configurations. The reference configuration corresponds to a noise level σε =0.02, an average number of
visits per subject E(ni )=7, q=4 allowed components of geometrical variability, and n=100 input subjects. The second line gives the discrepancy
between the ground truth (used for generating the data) and the MAP (used for evaluating the calibration performance), in the reference case. We
call this discrepancy the statistical error, by opposition to the calibration error

Fig. 5 Evolution of the error metrics across the 200 allowed itera-
tions of the MCMC-SAEM algorithm, for the reference configuration:
noise standard deviation σε = 0.02, q = 4 estimated components of
geometrical variability, learning on a data set composed of n = 100
with on average E(ni ) = 7 visits per subject, spanning 5 time units.
The 10 solid black curves correspond to 10 independent runs of the

same—stochastic—MCMC-SAEM algorithm; the bold green curve is
their average and the light green region indicates the associated stan-
dard deviation. The algorithm consistently converges towards similar
parameters at each run, and those estimated parameters are satisfyingly
close to the MAP estimate (Color figure online)

of the algorithm can be identified: the burn-in phase for the
first half of the iterations where the step-sizes ρ[k] remained
fixed to 1, followed by the concentration phase where the

step-sizes decrease geometrically. We can finally notice that
σα is estimated with more variance than other parameters,
and than στ in particular. This suggests that adding higher-
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order components to the time-warp functionsψi would come
with estimation challenges.

Table 1 gives the average final error metrics and the asso-
ciated standard deviations. Those standard deviations remain
in all but one case below 3%, underlining the stability of the
estimation algorithm. In most cases, the parameters are esti-
mated with less than 10% of error: exceptions only appear
in the configurations with very low noise levels σε ≤0.01 or
underestimated number of geometrical sources q =2. Inter-
estingly, a higher noise level σε does not necessarily correlate
with a degraded estimation of the parameters. The presence
of noise can actually help the algorithm to better explore the
space of parameters: it seemed that local minima may be
harder to escape for very low levels of noise.

In particular, the estimation performance of the noise vari-
ance σ 2

ε improves when the true value increases. Table 1
studies also the impact of the length of the observation period
E(ni ). Long periods generally favour more accurate estima-
tion of the parameters v0 = Conv(c0,m0) which encodes
the direction of the progression, and (στ , σα) which capture
its dynamical variability. However, because of compensa-
tion mechanisms that may take place at the individual level
between αi and τi , it is rather the joint quantity στ+σα that is
clearly better estimated when E(ni ) increases than στ and σα

independently. The same table compares also the estimation
quality when the true number of sources is underestimated
(q = 2), perfectly chosen (q = 4) or overestimated (q = 6).
The reconstruction ability of our model, measured by σε ,
increases with q, and seems to saturate once the optimal
number of sources has been reached. The large estimation
error made on σε in the case q =2 comes from the fact that
data was simulated from exactly four geometrical compo-
nents of comparable importance (see Fig. 3), thus creating a
strong reconstruction performance thresholding effect when
choosing q < 4. One can expect smoother variations of the
reconstructive performance on real data sets, which do not
result from the exact simulation of the generative model.
Parameters are in majority less well estimated in the q = 2
configuration, and at comparable distance to the MAP in the
two remaining ones. Finally, Table 1 shows that the number
of training subjects n has a major influence over the qual-
ity of the estimation. Almost all metrics are improved in the
configuration with n=200 subjects.

In conclusion, the proposed MCMC-SAEM-GD algo-
rithm successfully solves our model calibration problem
in varied configurations. The stochastic procedure is stable
across independent repetitions. The presence of noise in the
training data is well-handled, and actually seems to act as a
good regularizer for the estimation procedure. An underes-
timated number of sources does not harm the convergence
of the procedure, but mostly impairs the reconstruction abil-
ity of the learned model. This number should therefore be
gradually increased to meet the reconstruction goals of the

experimenter, keeping in mind that an intrinsic optimal per-
formance will be reached when q is large enough. Finally,
increasing the number of subjects or the number of visits are
both beneficial for model calibration.

5.1.3 Personalization After Calibration

Once calibrated, the longitudinal shape models are personal-
ized to the training data. The estimated individual parameters
αi , τi , si are compared to their true value. In order to be com-
parable with the true sources, the estimated sources are first
brought back to the cotangent space defined by the true con-
trol points ct0 by solving Conv(ct0,m

t
i ) = Conv(c0,mi ).

Figure 6 plots the estimated zi against the true correspond-
ing values. The acceleration factors are well aligned on the
bisector. The onset ages and sources are also estimated with
a low variance, but with a non-negligible bias. This effect
is due to the fact that the estimation of individual parame-
ters during personalization may compensate for some error
made during the estimation of population parameters during
calibration. Time-shifts τi may compensate an error on the
reference time t0. Acceleration factors αi may compensate
for an error in the norm of v0. Sources si may compensate
for an error in the norm of the columns of A0.

These effects do not question the identifiability of the
model, but rather suggest that, for a finite number of obser-
vations, the likelihood may have a rather flat maximum,
for which a range of parameter values may reconstruct data
almost equally well. Finally, two outliers can be noticed in
Fig. 6 for the pace of progression αi , as well as for the onset
age τi . These outliers correspond to extremely reduced win-

Fig. 6 Comparison of the estimated individual parameters zi =
(αi , τi , si ) after personalization of the mean calibrated model to the
simulated observations, in the reference scenario. In each scatter plot,
the identity is represented by the solid black line. The R2 value for the
sources is an average over the four geometrical components
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Table 2 Median of the residual errors and associated median abso-
lute deviation times 1.4826 for the estimated individual parameters,
expressed in percentage of the corresponding ground-truth standard
deviations σα = 0.2, στ = 2 and σs = 1

�αi (%) �τi (%) �si (%)

Reference 4.4± 11.9 44.2± 15.3 −11.7± 3.3

σε = 0.00 −3.8± 4.3 42.4± 24.8 −5.4± 6.8

σε = 0.01 −2.1± 6.4 11.8± 9.4 −11.1± 12.0

σε = 0.02 4.4± 11.9 44.2± 15.3 −11.7± 3.3

σε = 0.03 −7.6± 15.7 25.5± 15.0 −6.7± 2.5

σε = 0.05 −21.8± 23.4 4.4± 14.7 −9.1± 3.0

E(ni ) = 3 9.3± 32.7 −12.1± 19.3 −8.8± 3.2

E(ni ) = 5 2.9± 13.0 3.2± 20.8 −3.6± 7.5

E(ni ) = 7 4.4± 11.9 44.2± 15.3 −11.7± 3.3

E(ni ) = 9 −8.2± 7.3 46.0± 16.1 −7.6± 2.3

q = 2 −1.6± 18.0 48.3± 50.7 −2.4± 69.4

q = 4 4.4± 11.9 44.2± 15.3 −11.7± 3.3

q = 6 9.8± 12.3 45.3± 15.8 −11.7± 3.3

n = 50 −12.9± 8.1 24.8± 18.3 −6.9± 6.1

n = 100 4.4± 11.9 44.2± 15.3 −11.7± 3.3

n = 200 9.8± 10.5 13.2± 10.9 −13.1± 2.4

The results are given for the reference scenario plus eleven perturbed
scenarii, where either the noise level σε , the average number of visits
per subject E(ni ), the allowed number of geometrical components q or
the number of subjects n is varied

dows of observation ti,ni−ti,1, respectively equal to 0.07 and
0.20, when the theoretical mean is equal to 5.

Table 2 summarizes the results in all configurations, giv-
ing for each of the twelve considered setups the median
error and associated median absolute deviation on zi =
(αi , τi , si )when personalizing the average calibrated model.
Themedian is reported instead of themean because it is more
robust to outliers. Focusing on the estimation variability, it
appears that the sources si are the best estimated parameters,
followed by the pace of progression αi and the onset ages τi .
The estimation of the pace of progression αi quickly dete-
riorates with increasing levels of noise σε , reaching almost
25% of the true standard deviation σα = 0.2 in the most
noisy configuration. The estimation of the onset ages τi and
sources seems more robust, with no clear tendency. The esti-
mation of the pace αi improves when the number of visits
per subject E(ni ) increases. The same trend can be noticed
for the onset age τi , although with a reduced amplitude. The
sources si remain well-estimated in all scenarii. No clear
difference can be noticed between the reference q = 4 and
the over-estimated number of geometrical components case
q = 6, suggesting that adding components does not hamper
the personalization of a calibrated model. However, underes-
timating this number of components with q =2 deteriorates
the estimation of the sources si , and the dynamical parame-

ters αi and τi to a lesser extend. As in the previous section,
we interpret this large performance drop due to the fact that
data was simulated according to exactly four geometrical
sources of similar magnitude (see Fig. 3): in real data sets,
one may expect the estimation performance to change more
smoothly with q. Finally, an increased number of subjects n
allows a better performance of the personalization algorithm,
especially for the onset age τi and source si parameters.

5.1.4 Simulation After Calibration and Personalization

After calibration and personalization, the learned model and
empirical distribution of the random effects can be used to
simulate entirely synthetic shape trajectories. Figure 4 gives
some randomly selected samples from such simulated trajec-
tories for the reference scenario, where (see Eq. (19)):

• the fixed effects θm are averages over the 10 calibrations;
• the random effects zs are drawn according to independent
normal distributions with mean and standard deviations
equal to the values given by Table 2;

• the visit ages t s are drawn according to the true procedure
based on the average calibrated values for t0, στ , and the
empirical average 〈ni 〉i for E(ni ) (see Sect. 5.1.1).

Figure 7 compares the distribution of vertical or horizon-
tal positions of the tips of the original (see Sect. 5.1.1),
reconstructed (see Sect. 5.1.3) and simulated observations.
Those landmarks of interest are indicated by green dots and
arrows on Fig. 3, and form the statistic ζ introduced in
Eq. (19). A total of 1000 subjects are simulated, when only
100 were available for model calibration. The three distribu-
tions largely overlap, indicating that the learned distribution
of shape trajectories reproduces the true distribution.

5.2 Dynamic Facial Expression

5.2.1 Data and Preprocessing

The Birmingham University 3D dynamic facial expression
database (Yin et al. 2008) gathers short video sequences from
101 subjects (of which 58 female, 43 male). Each subject
mimics in 6 distinct sequences basic emotions which are
Anger, Disgust, Fear, Happiness, Sadness and Surprise. For
each of those 606 sequences we uniformly extract 8 frames
spanning from the first to the 36-th one, which correspond
to a subsampling of the first 1.4 s of each video. We do not
work directly with the images, but with a set of 75 semi-
automatically extracted landmarks, which come with this
data set. Every set of 3D landmarks is registered to a ref-
erence one by similarity-based Procrustes alignment.
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Fig. 7 Distribution of the position of landmarks of interest in the raw
(i.e. original), reconstructed (by personalization of the calibratedmodel)
and simulated data sets, for the reference configuration. Those land-
marks of interest are indicated by green dots on Fig. 3. The simulated

distributions are similar to the corresponding raw ones, suggesting that
the spatiotemporal variability of the original data set has been success-
fully captured

5.2.2 Model Calibration: Learned Emotion Models

We learn 6 distinct longitudinal atlas models: one per emo-
tion, calibrated on the n = 101 sequences of ni = 8 frames
for all subjects i . We choose q = 10 sources. Figure 8 shows
in green the estimated average scenario for each emotion.
Qualitatively, those average scenarii show a typical pattern
of facial expression. The Disgust, Fear, Happiness and Sur-
prise models feature large displacements in the area of the
mouth in particular. The Sadness expression is more mute,
with a subtle displacement of the eyebrows. TheAngermodel
shows a combined displacement of both eyes and eyebrows.

5.2.3 Gender-Specific Emotion Patterns

The estimated models are personalized to the corresponding
training data sets, giving for each sequence an optimal zi =
(αi , τi , si ).We only focus on exploiting the individual source
parameters si ∈ R

q = R
10 in this section. For each model,

wefit a 1Dpartial least square regressionmodel for predicting
the gender from a linear combination of the sources variables
si (Abdi 2003). We then test whether the linear combination
of the sources are significantly different between men and
women using a Student t-test. All p-values are smaller than
10−5, thus showing significant differences in the geometry of
the face between genders that are independent of the pattern
of expression.

Figure 8 shows the typical scenario for men and women,
which are built by translating the mean scenario in the direc-
tion of the average of the sources for each gender (in black).
For all emotion models, male subjects tend to have wider
faces than females, as it can very clearly be seen in the area
of the cheeks or of the nose for the Anger and Surprise mod-
els.

5.2.4 Application to Classification

We propose to automatically recognize the emotion from a
sequence based on the personalization of each facial expres-
sion model to the sequence. We propose here to use the
dynamic variables αi , τi for classification.

More precisely, we perform a fivefold cross-validation
ensuring that each group is gender-balanced. For each split:

– six longitudinal shape models are learned on the training
sequences for each emotion;

– these models are personalized to all the 606 sequences:
for each sequence a total of 6 zi vectors are therefore
estimated;

– for each sequence, the estimated temporal parameters
αi , τi are stacked into vectors of 6 × 2 = 12 scalars;

– these feature vectors are used to train and test a simple
linear discriminant classifier on the corresponding train
and test sequences.
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Fig. 8 Learned emotion spatiotemporal models. The population geodesic is plotted in green, and the shifted progressions along the gender mode
of geometrical variability are plotted in black (Color figure online)
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Table 3 Average confusion matrix across fivefold linear discriminant
classification

Angry Disgust Fear Happy Sad Surprise

Angry 64.3 7.0 8.1 4.0 16.6 –

Disgust 13.7 55.1 12.4 14.8 1.9 2.0

Fear 1.0 16.6 58.6 13.9 7.0 3.0

Happy 1.9 6.0 13.0 79.1 – –

Sad 16.5 2.0 14.2 1.1 66.2 –

Surprise 1.0 3.0 16.0 – 1.0 79.1

The sequence features consist in a 12-scalar vector that stacks the 6
pairs of dynamical parameters αi , τi obtained by personalizing the 6
emotion models. The average accuracy is 67.08%

Table 3 gives the confusion matrix obtained with this pro-
cedure, averaged over the 5 folds. The average classification
accuracy is 67.08%, above the chance level which amounts
to 16.67%. For comparison, Amor et al. (2014) reported
an average accuracy of almost 100%, Sun et al. (2008) of
90.44%, and Fang et al. (2011) of 74.63%. We emphasize
however that our performance is achieved:

– using the default linear discriminant analysis from the
sklearn library, without any hyperparameter tuning as
in Amor et al. (2014) with random forest, in Sun et al.
(2008) with hiddenmarkovmodel or in Fang et al. (2011)
with radial support vector machine;

– on all the 606 available sequences, without any man-
ual selection of a subset of 60/101 subjects as it is done
in Amor et al. (2014); Sun et al. (2008) or of 507/606
sequences as done in Fang et al. (2011);

– based only on 12 intuitive scalar features per sequence,
that encode how an individual emotional pattern dynam-
ically compares to population models of basic emotions.

From this experiment that has not been particularly tuned to
achieve best classification performance, we conclude that our
model captured shape characteristics that are specific to each
emotion. It is worth noting that we used here only dynamic
parameters that capture how fast or slow the face is changing
in the sequence, or with which delay.

5.3 Hippocampal Atrophy in Alzheimer’s Disease

5.3.1 Data and Preprocessing

Data used in the preparation of this section were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu).

We select all the T1-weighted MRIs of subjects that were
diagnosed as presentingmild cognitive impairements at some
visit, and diagnosed as converted to Alzheimer’s disease at

Table 4 Summary statistics of the medical data set of Alzheimer’s
disease patients

Number of subjects 322

Number of visits 1993

Average number of visits per subject (± std) 5.8 (± 2.4)

Average age (± std) 74.0 (± 6.7)

Sex ratio (F/M in %) 41.2 / 58.8

Amyloid status (+/-/unknown in %) 73.2 / 7.1 / 19.7

APOE carriership (%) 65.2

Education (mean ± std, in years) 15.9 (± 2.8)

Marital status (married/not married in %) 80.9 / 19.1

some later visit. See Table 4 for summary statistics. This data
set amounts to a total of 1993 visits from n = 322 subjects.
Second-take “re-test” MR images are available for 1838 of
those visits and will be used to estimate the noise in the data.
All those 1993 + 1838 = 3831 images are pre-processed
exactly in the same manner, starting with the longitudinal
pipeline of FreeSurfer1 (version 5.3.0) (Fischl andDale 2000;
Fischl et al. 2002). The skull-stripped brains are then aligned
with an affine 12-degrees-of-freedom transformation onto
the Colin27 average brain2 with FSL 5.03 (Woolrich et al.
2009).Meshes of the left and right hippocampus are obtained
from the original images as follow:

– the volumetric segmentations of the hippocampus com-
puted with FreeSurfer are transformed into meshes using
the aseg2srf script of July 20094,

– the resultingmeshes are decimated by a 88% factor using
Paraview 5.4.15 (Ahrens et al. 2005),

– they are aligned using the previously-computed global
affine transformation estimated with the FSL software,

– residual pose differences among subjects are removed
by rigidly aligning the meshes from the baseline image
of each subject to the corresponding hippocampus mesh
in the Colin27 atlas image, this transformation with 6
degrees of freedom being computed with the GMMReg
script of June 20086 (Jian and Vemuri 2011),

– the same transformation is finally used to align the
meshes from the follow-up images of the same subject.

1 Available at: https://surfer.nmr.mgh.harvard.edu.
2 Available at: http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27.
3 Available at: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
4 Available at: https://brainder.org.
5 Available at: www.paraview.org.
6 Available at: https://github.com/bing-jian/gmmreg.
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Fig. 9 Typical model of hippocampus atrophy from MCI to Alzheimer’s disease stage. Physiological ages (from left to right, in years): 58.6, 63.0,
67.4, 71.8, 76.2, 80.7, 85.1, 89.5, 93.9

5.3.2 Models of Atrophy of the Hippocampus

We calibrate two longitudinal shape models on all the 1993
meshes of the left and right hippocampus respectively, choos-
ing in both cases q = 8 sources. The deformation kernel
width is set to σ = 10 mm. The current distance is used
to compute distances between meshes without point corre-
spondence, with a kernel width of σE = 5 mm (Vaillant and
Glaunès 2005; Charon et al. 2020).

Figure 9 shows the estimated average progression, which
consists in an overall atrophy of both the left and right hip-
pocampus with a specific deformation of their shape. It is
worth noting that we reconstruct here the progressive atrophy
of the hippocampus over more than 30 years of disease pro-
gression although patients have never been observed formore
than few years. This can be achieved because the method
automatically re-aligns in time the data of patients that are at
different, but unknown, disease stage.

5.3.3 Personalization to Unseen Data

We assess the reconstruction performance of the calibrated
models using a fivefold cross-validation. The n = 322 sub-
jects are split into 5 groups; 2 × 5 distinct shape models
are calibrated on the training sets for the left and right hip-
pocampus. Those models are then personalized to the unseen
test subjects. To assess the goodness of fit, we measure the
residual errors and compared the distribution of such errors
with the noise distribution. This noise distribution is deter-
mined by measuring the distance between the two meshes

Fig. 10 Comparison of the generalization error to unseen data of the
learned shape models and the intrinsic measurement error. The dis-
crepancies between meshes are computed with the current metric with
σE = 5 mm, without assuming any point-to-point correspondence
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Table 5 Significant associations of individual parameters with genetic,
biological and environmental factors: effect sizes and significance levels
of the adjusted p-values (thresholds 5%, 1%, 0.1%, 0.01%)

Time-shifts τi are in months, others have no units. Directions of space-
shifts are not signed. The 23 subjects (out of n=322) without amyloid
information have been discarded

extracted from the “test” and “re-test” images acquired from
the same patient the same day, thus capturing all the vari-
ability due to varying image quality and its consequence in
the processing. Figure 10 shows the superimposition of the
distribution of the residual errors with the distribution of the
differences between themeshes of the test and re-test images.
The reconstruction errors are on average smaller than the
intrinsic uncertainty on the data, and with a lower variance
as well. The model allows therefore to reconstruct individ-
ual data at the precision of the noise. It is worth noting that
this could be achieved using a reduced set of 2× 10 scalars,
which are for each hippocampus the pace of progression αi ,
the onset age τi , and the eight sources si .

5.3.4 Association with Co-factors

We calibrate and personalize the models on whole data
set, and aim to study how some genetic, biological and
environmental co-factors may modulate the progression of
Alzheimer’s disease in patients.We therefore aim to find cor-
relations between individual variables zi = (αi , τi , si ) and
the following factors: gender,APOE-ε4 carriership, presence
of amyloid plaques, education level and marital status.

To this end, the parameters αi and τi are regressed against
the five considered cofactors, and two-tailed t-tests are per-
formed on the coefficients. A 2-block partial least square
regression model (Abdi 2003) is used to regress the eight

sources si against the five cofactors in a one-dimensional
projection space. A two-tailed t-test is then performed on the
weights of the multivariate regression of the linear combi-
nation of sources against the cofactors. For each case, the
obtained five p-values are corrected with the Benjamini-
Hochberg false discovery rate procedure (Benjamini and
Hochberg 1995).

Theobtained correlations for both left and right hippocam-
pus are summarized in Table 5. The two first rows indicate
that the atrophy of the hippocampus develops faster and starts
earlier in female subjects. Male and female subjects present
significantly different shape of their hippocampus regardless
of its atrophy due to aging or disease progression. Figure 11
presents the corresponding mode of geometrical variability.
Hippocampal atrophy also starts earlier in carriers of at least
one ε4 allele of the APOE gene, with an effect size of almost
three years. The atrophy occurs at an accelerated pace in
amyloid-positive subject, as well as for APOE-ε4 allele car-
riers and married subjects but only in a significant manner in
the left hemisphere of the brain. Finally, the atrophy occurs
earlier in married subjects, as well as in educated subjects.

The results obtained by correlating the estimated individ-
ual parameters zi with the genetic and biological factors are
in line with current knowledge. The results obtained with
respect to the marital status are more surprising, and should
probably be taken with care as the non-married group, which
represents less than 20% of the considered 299 subjects (see
Table 5) is very heterogeneous. It gathers widowed, divorced,
or never married subjects. Finally, we show that the atrophy
starts earlier also in subjects with higher level of education.
This fact is not as counter-intuitive as it appears, and actu-
ally is in line with the cognitive reserve theory (Stern 2006),
which supports the idea that education can help to compen-
sate damaged brain anatomy at the clinical level, maintaining
unaltered cognitive capacities for a period of time. In other
words, cognitive declinewould be delayedwith respect to the
onset of brain atrophy in educated subjects. Since, in addi-
tion, the age at diagnosis is not correlated with the number
of years of education in our dataset (r =−0.02 and p=0.70
according to a two-tailed test based on Pearson’s correla-
tion coefficient), this explains why the subjects present an
increased atrophyof their hippocampi for an increased educa-
tion: they enrolled with a more advanced stage of anatomical
pathology, after some years of compensation.

5.3.5 Simulation of Hippocampus Atrophy Due to AD

The calibrated models and the empirical distribution of
random effects zi estimated by their personalization to the
training data are used to simulate synthetic progressions of
the hippocampus. In order to validate such a simulation
method, the simulated trajectories are sampled at several
ages, and the empirical distribution of the volumes of the
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(a)

(b)

Fig. 11 Superposition of the male-like (in blue) and the female-like
(in pink) hippocampus geometries, in two standard views. The letters
L, R, A, P respectively indicate the left, right, anterior and posterior
directions

simulated hippocampus are compared to the distribution of
the original hippocampus. The volume is commonly used as
a biomarker in clinical studies, and we aim to assess if the
simulated cohort could be used instead of the original one.

To do so, we simulate the same number of subjects as in
the training cohort (n = 322) with the same number of time-
points and same time interval between visits. Note that we
do not use the age at baseline, so that the sequence of obser-
vation time-points in the synthetic subjects may be shifted in
time compared to the real ones. We simulate according to the
empirical distribution of the individual parameters zi and the
age at baseline. There exists indeed a correlation between the
estimated time-shift τi and the baseline age of the enrolled
subjects ti,1, as they tend to be included in the study at similar
disease stage. To be more precise:

– the empirical joint distribution of the time-related param-
eters αi and τi augmented with the age at baseline ti,1 is
computed using a kernel density estimation method;

– the empirical joint distribution of the time-related param-
eters augmented with the sources si is captured by fitting
a multivariate Gaussian distribution.

A simulated data set is then created by applying 322 times
the following procedure:

Fig. 12 Distribution of the left and right hippocampal volume in the
raw, reconstructed and simulated data set. The simulated volume dis-
tribution is very close to the volume distribution of the reconstructed
data set. The remaining bias between those two distributions and the
one corresponding to the raw data comes from the smoothing behavior
of the current noise model, leveraged to deal with noisy meshes without
point correspondence. See Fig. 13

Fig. 13 Several views of a single example of the reconstruction of
a right hippocampus structure by the longitudinal shape model. The
reconstruction is the smooth white structure, and the raw data point is
plotted in red (Color figure online)

– draw the acceleration factor αi , the onset age τi and the
baseline age ti,1 from the corresponding kernel density;

– draw the sources si from the multivariate Gaussian con-
ditional distribution with respect to its already-drawn
time-related parameters;
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– draw without replacement the sequence of visits of one
subject i.e. the number of visits and the time intervals
between them;

– sample the individual hippocampus trajectory defined by
zi = (αi , τi , si ) at the baseline age ti,1 and the follow-up
visits.

This protocol is repeated for both the left and right hippocam-
pus, and for men and women (meaning that the estimation
of the empirical distributions is done for both genders sepa-
rately).

Figure 12 shows the volume distributions of the raw,
reconstructed and simulated data. The cumulative distribu-
tion functions associated to the simulated and reconstructed
distributions of hippocampal volumes are superimposed.
This result suggests that for this volume statistic, the sim-
ulated and true data set could be used interchangeably. Raw
and reconstructed distributions does not superimpose sowell,
because the model reconstructs smooth shapes whereas raw
meshes often have small protrusion pointing outward of the
surface which tend to bias volume computation (see Fig. 13).
This volume difference between the raw and reconstructed
meshes amounts on average to 84.5 mm3 for the left hip-
pocampus and 67.3 mm3 for the right hippocampus.

Now validated, the simulation algorithm could be used
to synthesize a data set of left and right hippocampus of any
number of subjects, with any desired visit sampling. The pro-
posed gender-wise split further allows to achieve any desired
male-female balance.

6 Conclusion

We proposed a statistical modeling approach that repre-
sents individual data sequences as samples along continuous
trajectories, these trajectories being considered as spatiotem-
poral perturbations of a population-average progression. The
spatial warp is defined thanks to the exp-parallelization
operator on manifolds. The time warps are affine time-
reparameterizing functions. The spatial and temporal indi-
vidual parameters position the progression of each subject in
a spatiotemporal reference frame centered around the aver-
age trajectory of the population.

We proposed calibration, personalization and simulation
algorithms to address different statistical questions. The cal-
ibration algorithm combines the MCMC-SAEM stochastic
approach with gradient descent to estimate the underlying
common process and its spatiotemporal variability from a
longitudinal data set of shapes. It does not require a common
time reference to be available across individual processes,
which furthermore may be observed each for only short
periods of time. Personalizing such calibrated models to a
new individual data yields quantitative, low-dimensional and

interpretable measures of how the progression of an individ-
ual deviates from a normative scenario. These parameters
include an acceleration factor and a time-shift on the one
hand, and geometrical sources of variability on the other
hand. Such individual parameters offer relevant features for
classification or correlation tasks, in a post-processing step.
The generative nature of the proposed model naturally offers
a simulation algorithm, which can generate entirely synthetic
data sets. Such data set may be sampled at any desired tem-
poral frequency, for any number of subjects and with a full
control over the population characteristics, for instance in
terms of gender balance.

We emphasize that the proposed modeling approach is
able to deal with meshes without any assumption on their
topology, in particular without assuming point-to-point cor-
respondence. It may be extended easily to deal with images
or other geometric primitives, provided that one can define a
metric between such objects.

The three proposed algorithms were validated in var-
ied simulated configurations, demonstrating their ability to
retrieve the true parameters or reproduce the original data
distribution. They were illustrated on a data set of facial
expressions, showing the relevance of the learned normative
scenarios and the potential of the spatiotemporal parameters
for classification. We apply the method also to large medical
data set of patients that develop Alzheimer’s disease. The
average scenarii of atrophy for the hippocampus subcorti-
cal structures are in line with current medical knowledge.
Individual sequences are successfully parametrized by 10
scalar spatiotemporal coordinates in the calibrated reference
frames. Correlating these coordinates with genetic, biolog-
ical and environmental factors gives valuable insights into
protective factors influencing age at onset or pace of pro-
gression. We also evidence typical shape differences across
sub-groups, which are independent of the shape changes due
to ageing or disease progression.

The calibration algorithm is computationally intensive:
estimating a model of hippocampus progression took around
a day. Our code is already parallel, combines CPU and GPU
together, and offers a fine-grained initialization pipeline. Fur-
ther pure optimization of our code (among which multi-GPU
support, fast Fourier transforms for convolutions) is planned,
as well as evaluating the performance of variational methods
for calibration—which are not trivial to implement in a lon-
gitudinal context without a fixed number of observations per
individual.

As for any modeling approach, our model relies on some
assumptions. For instance, subjects are considered to follow
trajectories that are parallel to the population average. This
hypothesis may be alleviated by introducing drift parameters
to model a progressive deviation from the average scenario.
Such a development would add to the complexity of the
model, which may require to have even more data to be cal-

123



2894 International Journal of Computer Vision (2020) 128:2873–2896

ibrated. Further extensions would consider also to estimate
not only one representative trajectory at the population level
but several of them, for instance by estimating a mixture
model along the lines of Debavelaere et al. (2019). Nonethe-
less, it is worth noting that in its current form the model is
able to reconstruct data at the precision of the noise.

The model also builds on the LDDMM framework for
modeling shape variability. This framework relies also on
some assumptions on the geometry of the shape space. Future
work will consider to learn such geometry from the data
instead of relying on prior assumptions, along the lines
of Bône et al. (2019) for instance. Learning other parameters
such as the number of sources, using automatic model selec-
tion methods for instance, would also add to the usability of
the method.
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Meshes represented as currents

The theory of currents has been introduced in Vaillant and
Glaunès (2005), and is used in this paper to define a distance
metric between pairs of meshes without any assumption on
their topology, and in particular without assuming point-to-

point correspondence. See also Charon et al. (2020) for more
details.

A.1 Continuous theory

Let y be a surface mesh, that we represent as an infinite set
of tuples (x, n(x)) where x is a point of R3, and n(x) the
normal vector of y at this point. Let gE : R

3 × R
3 → R

be a positive-definite kernel operator, and E the associated
reproducing kernel Hilbert space.

We define the current transform C(y) : R3 → R
3 ∈ E of

y as:

C(y)(.) =
∫

y
gE (x, .) · n(x) · dσ(x)

where dσ(x) denotes an infinitesimal surface element of y.
The inner product of E on currents therefore writes:

〈C(y), C(y′)
〉
E=

∫

y

∫

y′
n′(x ′)�·gE (x, x ′)·n(x)·σ(x)·dσ ′(x ′)

where (.)� is the transposition operator. This inner product
defines in turn a distance metric on currents:

dE (C, C′) = 〈C, C〉
E + 〈C′, C′〉

E − 2 · 〈C, C′〉
E .

A.2 Practical discrete case

In practice, y is described by a finite set of T triangles inR3 of
centers c1, . . . , cT and corresponding surface normal vectors
n1, . . . , nT . We further assume that gE is a Gaussian kernel
of radius σE . The current transform equation then writes:

C(y)(x) =
T∑

k=1

exp
−‖x − ck‖2�2

σ 2
E

· nk

for any x ∈ R
3. Similarly, the inner product formula

becomes:

〈
C(y), C(y′)

〉

E =
T∑

k=1

T ′∑

l=1

exp
− ∥∥c′

l − ck
∥∥2

�2

σ 2
E

· n�
k n

′
l

which fully specifies the distancemetric dE that can be imple-
mented in practice to measure the discrepancy between any
pair of currents.
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